Robust Methods for Autonomous Fault-Adaptive Control of Complex Systems

Gautam Biswas, Ken Frampton, & Gabor Karsai

Graduate Students: S. Narasimhan, E.Manders, J. Wu, and J. Ramirez

Vanderbilt University

Nashville, TN

NASA Intelligent Systems PI Meeting, Monterey, CA Sept. 3-5, 2002

Autonomous Fault-Adaptive Control Gautam Biswas (PI), Frampton, Karsai (co-PI's) Vanderbilt University

Goal: Develop autonomous fault-adaptive on line control for complex systems.

Objectives:

- Develop **modeling techniques** for distributed hybrid systems that handle interactions efficiently.
- •Perform Robust **Fault Detection and Isolation (FDI)** in a distributed hybrid system environment using a combination of Beard-Jones filters, hybrid diagnosis schemes, and Failure Propagation Graphs.
- Design **controller tuning** and **controller reconfiguration** methods for reliable fault-adaptive control.

Key Innovations:

- Distributed hybrid modeling techniques.
- Monitoring and mode identification in hybrid systems.
- •Fault detection and isolation with hybrid models; integrate hybrid diagnosis across subsystems
- •Online controller tuning and controller selection and reconfiguration

NASA Relevance:

- Develop technology for long-term autonomy of complex dynamic systems using model-based, distributed, intelligent online algorithms
- Contribute to autonomous operation of NASA missions.

Accomplishments to date:

- Hierarchical Hybrid modeling: Bond Graphs + Discrete Event Systems
- Comprehensive FDI applied to real applications
- Online safety control by incremental analysis
- Multi-layered architecture for FDI and Control
- Modeling and analysis of WRS of Bioplex system (in conjunction with NASA JSC)
- Publications

10/8/2002:

NASA-IS Meeting (Monterey)

Schedule:

Year 1: Foundations

Modeling (Hybrid + Interactions), Hybrid Observer Prototype B-J filters, hybrid diagnosis, and FPG diagnosis

Year 2: Prototype

Refined and integrated modeling of system, interacting hybrid observers, integration of diagnostic modules, prototype controller selector; NASA application

■Year 3: Integrated System

Complete model of NASA application, integrated runtime system (observers + FDI units + reconfigurable 2 controller), Demonstration of NASA application

Key Technical Challenges for Autonomous, Fault-Adaptive Control

Complex, Embedded Systems: Tasks

- Modeling

- Component based modeling + composition
- Hybrid models: controlled + autonomous transitions
- Tuning models to track real system behavior

- Tracking

- Complex continuous processes with discrete changes in uncertain environments (Kalman filters + hybrid automata)
- Systems with large mode spaces: online model generation

Fault Detection and Isolation

- On line (real time?) FDI: detect small changes at onset + analyze transients in the face of mode changes + online parameter estimation
- Robustness issues: dealing with model disturbances + measurement noise

- Controller Reconfiguration

• Online safety control as a search process

Complete Architecture for Transient Detection and Analysis

Fault Detection — robust detection of small changes + detecting fault onset

Abrupt change detection theory + statistical signal detection

Optimal detector based on time frequency analysis of signal (wavelets) + energy detection in transients

Subsampling methods to accurately define onset

Signature Generation – signal to symbol transformation

setting of thresholds: partly signal theory + partly experimental

derivative estimation from discrete time approx. of signals in noisy environments: implemented as linear estimation problem with FIR filter

Fault Isolation – (hypothesis generation + refinement) + parameter estimation

dynamics of transient captured by TCG linked to Taylor series expansion of signals

10/8/2002: NASA-IS Meeting (Monterey)

Hybrid FDI Architecture

- Component based modeling using Hybrid Bond Graphs + decision functions to implement mode transitions
- Used to systematically derive State Space Equations (SSE), Temporal Causal Graph (TCG), and Input Output Equations (IOE)

Hybrid Observer

Key Innovations:

Observer is composed automatically from component models

- Dynamic update of model after mode changes
- Track autonomous changes
- Tracking of noisy signals

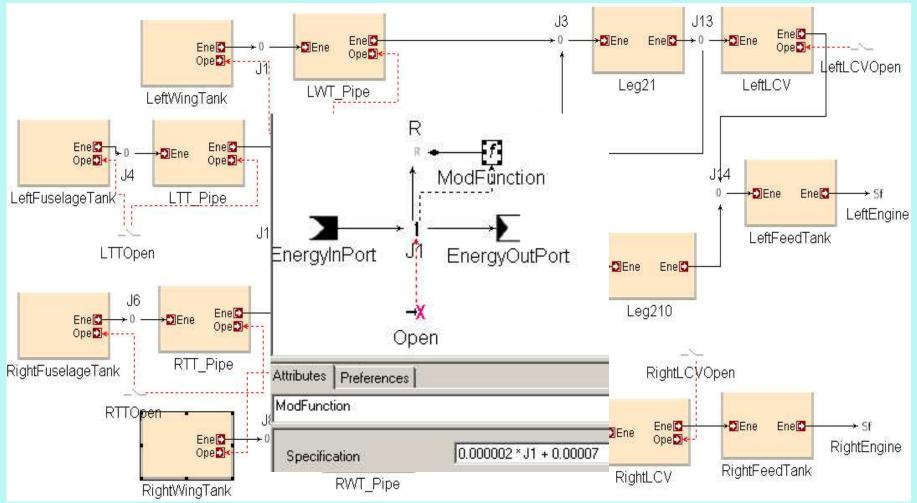
Fault Isolation & Identification

Key Innovations

Roll back and Roll forward process; dealing with mode transitions Combining qualitative with parameter estimation

Wanderbilt

Fuel System Configuration



- Transfer Pump
- **Level Control Valve**
- **Interconnect Valve**
 - **BP** Boost Pump
 - M Flow Meter
 - **Fuel Quantity Sensor**

Components with nonlinear behavior

- Modeling with modulating functions
- Modified tracking algorithm to solve non-linear equations
- Causality based on nonlinear relations
- Only controlled transitions, no autonomous transitions

Fuel System GME model

Key issue in model building: matching model parameters to real

System behavior

10/8/2002:

Fuel System Demo

•timestamp (453.0) LWT_Pipe.R-, LeftWingTank.R-, LeftWingTank.TF+, Leg21.R+, Leg210.R+, Leg25.R+, Leg26.R+, RWT_Pipe.R-, RightLCV.R+, RightWingTank.R-, RightWingTank.TF+

- •timestamp (476.0) Leg21.R+, Leg210.R+, Leg26.R+
- •timestamp (530.0) Leg21.R+, Leg210.R
- •timestamp (597.0) TCG has finished, in 151 steps, starting parameter estimation for: [Leg210.R+ Leg21.R+]
- •For Leg210.R+...finished, error: 18999
- •For Leg21.R+...finished, error: 7.17291
- •Setting Leg21.R's fault coefficient to 99.3068

Fuel System Demo (contd. ...)

After FDI & identification, Kalman filter turned on with updated model – accurate tracking resumes; can use this model for prediction and fault-adaptive control (e.g., online safety control)

Example: Bioplex System

Water Recovery System

Water Recovery System

- Loosely coupled
- Goes through multiple modes of operation
- Complex nonlinearities in individual components
- How do we achieve horizontal and vertical compositionality to assist the FDI and distributed control tasks

WRS Simulink-Stateflow Model

WRS simulation Preliminary Results

Next Steps/ Future Work Advanced Control Architecture (Multi-layered)

Key Innovations

- Hybrid modeling techniques for complex systems with distributed subsystems
- Robust online monitoring and mode identification in hybrid systems
- Robust online fault detection and isolation with hybrid models (statistical + qualitative fault isolation + quantitative parameter estimation)
- Fault isolation extended to hybrid systems (roll back + roll forward)
- Online incremental safety control
- Integrated system for real applications

Publications: Hybrid Systems '02, Diagnosis (DX) '02, Book Chapter (Samad & Balas), Trans. IEEE SMC (special issue),

NASA Relevance

- Develop technology for long-term autonomy of complex systems
 - Model-based
 - Distributed, On line
 - Intelligent
 - Robust
 - Comprehensive
- Contribute to autonomous operation of Life Support System processes
 - Air revitalization system
 - Advanced Water recovery System
 - Other NASA missions
- Vehicle Health Management
- Rover (?)

Kortenkamp & Bonasso NASA JSC

Dearden & Narasimhan NASA Ames

Schedule

Year 1: Foundations

- Modeling (Hybrid + Interactions)
- Hybrid Observer
- Prototype B-J filters, hybrid diagnosis, and FPG diagnosis

Year 2: Prototype

- Refined and integrated modeling of system
- Interacting hybrid observers
- integration of diagnostic modules
- Prototype controller selector
- NASA application

Year 3: Integrated System

- Complete model of NASA application
- Integrated runtime system (observers + FDI units + reconfigurable controller)
- Demonstration of NASA application

Extra Slides

Fault-Adaptive Control Architecture

Model-based approach to design and implementation of Tools and Components

Fault Isolation Task Hybrid Systems

Presence of fault invalidates the tracked mode trajectory Have to backtrack to find fault hypotheses

Fault Hypothesis: <mode,parameter,∆parameter>
Qualitative Fault Hypothesis: <mode,parameter,≁>

Fuel System Diagnosability Results

	WTP	WTR	TTP	TTR	TMR	SPR	FTP	FTR
WTP	_	X	V	1	√	1	1	Ą
WTR	X	_	1	√	√	Ą	1	V
TTP	√	√	ı	X	$\sqrt{}$	1	1	1
TTR	√	√	X	_	V	Ą	Ž	1
TMR	√	√	√	1	_	√	V	V
SPR	√	√	√	1	٧	-	Ų	Ŋ
FTP	1	1	1	1	1	1	_	X
FTR	1	1	1	1	1	1	X	_

WT - Wing Tank

TT - Transfer Tank

TM - Transfer Manifold

FT - Feed Tank

P: Pump

R: Resistance